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The development of a turbulent wake in a distorting duct 
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(Received 7 October 1980 and in revised form 13 March 1981) 

Characteristics of the turbulent motion in a cylinder wake have been measured during 
passage through a distorting section of a wind tunnel, the overall effect of the distortion 
being considerable lateral extension and compression without a considerable change 
of flow velocity. However, the sectional area is not constant and rates of longitudinal 
extension are comparable with the rates of lateral straining. Hot-wire anemometers, 
mostly in X-configurations, are used to measure mean velocities, turbulent intensities, 
Reynolds stresses, intermittency factors and spectra, and velocity correlations have 
been calculated from digital recordings of the outputs from arrays of eight single-wire 
anemometers. I n  contrast to previous investigations, the direction of compression is 
parallel to the axis of the cylinder, and the original entrainment eddies of the plane 
wake are suppressed rather than amplified. 

The results show that substantial changes in stress-intensity ratios, entrainment 
rates, dissipation rates and turbulence length-scales occur in response to the three- 
dimensional distortion. I n  particular, the ratio of Reynolds stress to total intensity 
increases during the initial acceleration of the flow before decreasing as the flow is 
strained laterally, and correlations show that length-scales do not change in pro- 
portion to the lateral extension and become relatively small compared to the flow 
width. 

1. Introduction 
For the understanding of turbulent shear flow, a central problem is the interaction 

between the turbulent motion and the gradients of mean velocity. If the mean flow is 
effectively unidirectional, as in many jets, wakes and boundary layers, distortion of 
the turbulence is almost entirely by a simple shearing and the components of the 
Reynolds-stress tensor have much the same ratios in all the flows. More complex 
modes of distortion appear if the streamlines of the mean flow are appreciably diver- 
gent or curved, and they lead to considerable changes in the turbulent motion, not 
only in the stress ratios but in length scales, eddy geometry and rates of entrainment. 

One flow with complex distortion of the turbulence is a turbulent wake developing 
as it passes through a distorting duct with sections of constant area but changing 
aspect ratio. I n  addition to the ‘normal ’ simple shearing, the turbulence experiences 
irrotational extension and compression in the plane at  right angles to the flow, and the 
consequent enhancement and alignment of vorticity in the direction of extension 
leads to modification of flow geometry and flow processes. Reynolds (1932) and Keffer 
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FIGURE 1. Longitudinal sections of the distorting duct. 

(1965,1967) have studied wake turbulence in a constant-area duct with height varying 
exponentially with distance from the entrance, the direction of compression being at 
right angles to the plane of the wake. For that direction of compression, large increases 
in rate of entrainment of ambient fluid occur as entrainment eddies with axes parallel 
to the direction of extension gain energy from the irrotational flow, and there are 
changes in the stress ratios and in the spectra of the velocity fluctuations. In  the flow 
with the direction of extension at  right angles to the plane of the wake, entrainment 
eddies are expected to lose energy to the irrotational flow with consequent reduction 
in rate of entrainment. An interesting question is whether the wake develops an 
alternative mechanism of entrainment that is not inhibited by the lateral straining. 
The experimental work to be described includes measurements of distributions of mean 
velocity defect and turbulent intensities, of mean-square velocity derivatives, of inter- 
mittency factors, and of velocity spectra and correlations, and one purpose was to 
find if the measured changes in stress-intensity ratios and correlation functions could 
be described by an application of the rapid-distortion approximation to the equations 
of motion (Elliott 1976; Townsend 1980). Here, the measurements are analysed 
to provide information also about overall properties of the flow such as entrainment 
rates, rates of energy dissipation, profile shapes and eddy length scales, as well as local 
properties such as the stress-intensity ratios. 
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2. Experimental arrangements 
The layout of the tunnel working section is sketched in figure 1. The flow passes first 

through a parallel section of length 0.51 m and lateral dimensions 0.19 x 0.76 m2 
(horizontal to vertical) before entering a distorting section of similar length over which 
the section changes to 0.76 x 0.19 m2. The recovery section is parallel-sided and 
exhausts into the room. The wake was produced by a cylindrical rod of diameter 
3.18 mm, spanning the tunnel entrance with its axis vertical. 

Airflow velocities past the cylinder were not exactly the same for all runs, but no 
systematic dependence of the non-dimensional quantities on flow velocity could be 
seen. For the data described here, the average flow velocity was 8.45ms-l, and the 
cylinder Reynolds number was 1780. The entrance to the distorting section is 160 
diameters distant from the cylinder and, in a parallel free stream, the development of 
the wake would be nearly self-preserving (Townsend 1949). 

Mean velocities and turbulent intensities were measured using hot-wire anem- 
ometers with two wires arranged in the form of an ' X ') each a t  an angle of roughly 45" 
to  the support. Each was connected in a conventional, constant-resistance control 
bridge, and the response is thought to be substantially uniform from 0.5Hz to  a t  
least 5 kHz. They were calibrated statically, either in situ with the cylinder removed 
or in a separate wind tunnel, by measuring the bridge output for a range of flow 
velocities and directions, typically for a range of 2.5 : 1 in velocity and 30" in angle. 
The calibration data for each wire was fitted to the relation 

E2 = a+bU:, 

U," = U2(cos2 (8 - #) + a sin2 (8  - #)) 
in which 

where E is the output voltage, U is the flow velocity, 8 is the angle between the flow 
direction and the probe support; a,  b, q5, a are chosen for best fit to the data. 

I n  use, mean output voltages are measured for each wire, and the mean velocity and 
direction found by solving equation (2.1). If the flow direction lies within the range of 
calibration, the incremental sensitivities to cross-stream and streamwise fluctuations 
are easily calculated. The fluctuations of the output voltages, e ,  and e,, were amplified 
and mean values of e i ,  e i ,  ( e ,  + eb)2 and ( e ,  - eb)2, were obtained using analogue circuits 
for adding and squaring and resistance capacity filters with time constants of about 10 s. 

For measurements of intensities, Reynolds stresses, mean velocity and inter- 
mittency, the hot-wire probe was moved across the wake in steps and, a t  a suitable 
interval after each movement, the mean bridge voltages, the mean squares and the 
probe position were recorded in digital form on paper tape. The interval between 
steps was approximately 35 s. 

Spectra were obtained from digital recordings of the anemometer outputs, sampled 
a t  intervals of 0.256 ms. Standard methods used fast Fourier transform routines to 
calculate the power spectra of the velocity components and their cross-spectrum. 

Information about flow patterns of the turbulent motion was derived from digital 
recordings from arrays of eight single-wire anemometers, arranged a t  intervals of 
10 mm in a line and with the outputs sampled a t  intervals of 1.024 ms. The recorded 
data were analysed to give time-delay cross-correlations for all the sensor pairs. 
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3. Flow equations 
The flow is described with respect to rectangular axes with Oy the axis of the 

cylinder and Ox the centre-line of the tunnel. Components of the mean velocity are 
U ,  V ,  W ,  and the components of the velocity fluctuation are u, v, w.7 Since the flow is 
essentially incompressible, pressures and stresses take their kinematic forms. 

The proper way to describe the flow change induced by the wake is by changes along 
the streamlines of the mean flow, but the wake causes such small lateral displace- 
ments of the streamlines (at most 1.6 mm) that it is sufficientlyaccurate to use changes 
at fixed points. At 160 diameters from the cylinder, the changes in the lateral com- 
ponent of mean velocity are less than changes in the longitudinal components in a ratio 
of nearly Z,/x, where I, is the width scale of the wake defined by 

the suffix 1 denoting a value in the absence of the cylinder.$ Since the ratio is approxi- 
mately 0.02 a t  160 diameters, the lateral component of mean velocity in the wake 
flow can be set equal to that in the basic flow without appreciable error. 

Then the equation for the cross-stream component of mean velocity on the central 
plane, y = 0, is 

aw, aw, auw a 3  ap U---+W,-+-+---=-- 
ax az ax ax ax 9 

or, subtracting the equation for the basic flow, 

aw, auw a 2  a (U-U)-+-+- = --(P--P,), 
ax ax ax a2 

where P, and P are the mean pressures in the basic and wake flows. The change in mean 
velocity on the centre-line is nearly u, = U,/(x/d)& _N 5U,l,/x (d is the cylinder 
diameter), and so the first two terms are of order u;/x and so small compared with the 
third. Since P = PI outside the wake, 

P-P1+2= 0. (3.2) 

The equation for the longitudinal component is 

and, by subtracting the equation for the basic flow, it may be transformed to 

(3.3) 
a - - aziz au, 
ax a2 ax 

(u  f + w,;) ( U - U,) + - (u2 - w2) + - + - ( U - Ul) = 0. 

Using the condition of incompressibility, equation (3.3) can be integrated across the 
flow to give an equation for the momentum integral, 

(U-U,)dz+- (U-U,)dZ = 0. aUIS ax (3.4) 

t At times, it  is convenient to use tensor notation when the axial directions Ox, Oy, 0% 

$ Throughout, the range of integrals is to be understood as the complete width of the wake. 
correspond with suffixes I ,  2, 3. 
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Here, V has been put equal to V, and is assumed to be independent of z, and a term 
( d / d x ) l ( s - s ) d z  has been omitted as being small compared with the terms retained. 

Putting aK/ay = (U,/b) db/dx, where b is the extension ratio of the flow in the Oy 
direction near the centre-line, 

& [ U:b/( U - U,) dz] + U,b$/( U -  U,)Zdz = 0, 

and, if I U -  Ull Q U', 

U:bj(U-U,)dz = M (a constant). 

(3.5) 

The equation for the total turbulent kinetic energy, @ (where q2 = u2+v2+ w2), is 

(u a/ax + w i7;" + a / a z ( p  + @w) 
- + ~2 au/a~ + 2 a v /ay  + 2 a w/az + uw au/az + E = 0, (3.7) 

where E is the local rate of turbulent energy dissipation. Integrating across the wake 
gives 

+ i z ( a u / a z ) a z +  = 0, (3.8) s s 
omitting the small term (d/dx)j@( U - U,) dz. All the terms can be calculated from the 
measurements except the total dissipation. To distinguish between energy production 
by working of the normal stresses against longitudinal gradients of mean velocity and 
production by the lateral straining, the integrand of the second term may be rewritten 
as 
- 
UZau/ax + Ga v/ay + 2 a w/az 

- -  - -  
= (2 - *(v2 + w2)) a u/ax + *(VZ - w2) (a v/ay - aw/az). (3.9) 

The rate of entrainment of non-turbulent ambient fluid into the wake can be found 
from the intermittency signal S(x, t ) ,  defined to be zero in non-turbulent fluid and one 
in turbulent fluid. The flux of turbulent fluid is (U + u) 8, and so the local rate of 
conversion of ambient to turbulent fluid is 

div [( U + U) S] = U a8/ax + V a&/ay + W 8/82 + a(uS)/az + a(~S)/ay + a(ws)/az. 
(3.10) 

Averaging and then integrating over the width of the wake, the mean rate of con- 
version per unit area in the zOy plane is 

dx 

or, to the approximation that I U, - U l <  U,, 

(3.11) 
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FIGURE 2. (a)  Variation of flow velocity on the centre-line in the absence of the cylinder. 
(b )  Variation of strain ratio in the Oz direction. 0,  Calculated from measured angles of flow; 
0, calculated assuming M = Ui b$( U, - U )  dz is constant. 

where 2y0 = / $ d z .  Putting aV,/ay = (UJb)  db /dx  as before, 

U ,  = b-l d (  Ul by,)/dx (3.13) 

defined as the entrainment velocity across the bounding surface of the wake. 



Turbulent wake development in a distorting duct 439 

-4 

-6 -i 
0 

\ 

-5 

\ ‘. 

I 
0 

‘a 

I\ 
5 
. - 

z (cm) 

FIGURE 3(a ) .  For legend see page 440. 

4. Mean velocity distributions 
Because the transitions between the parallel flow sections and the distorting section 

are very abrupt, considerable flow separation occurs in the internal angles, a t  the top 
and bottom a t  entrance to the distortion and a t  the side walls on exit. Consequently, 
it is not possible to calculate the basic flow from the duct dimensions and the velocity 
distribution must be found by measurement. 

Figure 2 shows the measured distribution of mean velocity close to the duct axis, 
expressed as a ratio to V,, the velocity on the axis a t  the reference position xr = 0.42 m. 
The ratio, UJU, = a,  is the extension ratio in the stream direction between the reference 
position and the position of measurement. The results are derived both from measure- 
ments with X-wires and with linear arrays of hot-wires aligned normal to the flow 
direction. No significant inhomogeneity in the Oy direction was found. 

The lateral extension ratios were obtained from the measurements of flow direction 
in traverses of X-wires across the wake. Within the uncertainty of measurement, the 
angle between the flow direction and the tunnel axis, 8, is a linear function of displace- 
ment in the Oz direction (figure 3a, b) .  Since the angles are small, t an8  = W/U is 
nearly equal to 8, and the slope is 

The velocity defects are small and the average slopes of the 8-2 plots is a good approxi- 
mation to U;laW,/az, where aW,/az is the rate of lateral extension in the Ox direction. 
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FIQURE 3. Angles of inclination of the mean flow. (a)  Lateral variation for z = 72 cm. ( b )  Lateral 
variation for z = 82 cm. ( c )  Divergence rate against downstream distance. 
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Then, by numerical integration of the slope measurements (figure 3c), the total strain 
of the basic flow from the reference position can be found as 

Figure 2 ( b )  shows values of the lateral strain e found in this way, together with 
values obtained by assuming invariance of the momentum perameter defined by 
equation (3.6). The two sets of values are in fair agreement for distances from the 
cylinder less than 1 rn. The occurrence of flow separation is responsible for the dif- 
ference between the final extension ratio of nearly three and the wall separation ratio 
of four. 

Mean velocities in the wake have been obtained from traverses with X-wires, with 
linear arrays of single wires and with total head tubes. The distributions of velocity 
defect are similar in shape to the Gaussian error function, the main difference being 
a more rapid approach to the free-stream velocity (figure 4). Since the shapes are all so 
nearly the same, the distributions may be specified by a length scale, lo,  and a velocity 
scale, uo, defined by 

and by 

uo = I(U1 - U )  dx x (J[Sn] lo)-l .  (4.4) 

If the distributions were precisely error functions, the velocity scale would equal the 
maximum velocity defect. Using data from traverses of the linear array, values of the 
scales were found and shown in table 1 and plotted in figure 5. 

To test the assumption that the wake flow is essentially homogeneous in the Oy 
direction, the momentum parameter ( M  of equation (3.6)) has been calculated from 
the array measurements with results shown in figure 6. For distances from the cylinder 
less than 1 m, no significant variation is to be seen but it then begins to increase. The 
increase is almost certainly caused by transfer of momentum between the wake and 
the boundary layers on the top and bottom of the duct. It may be noticed that the 
overall width of the wake at x = 1 m is 80mm, compared with the duct height of 
190mm. 

5. Distributions of turbulent intensity and Reynolds stress 
Lateral distributions of the three components of turbulent intensity and of the 

Reynolds stress have been obtained from traverses at distances from the cylinder in 
the range 41-116 cm, and the distributions from one sequence of traverses are shown 
in non-dimensional form in figure 7. The intensity scales are the central values or, for 
the Reynolds stress, the maximum absolute value, and the length scale is I ,  as defined 
by equation (4.3). Excepting the distributions of w”, the shapes change little during 
passage through the distortion and scales of intensity and width are sufficient to 
describe the changes. The change in shape of the distributions of 3 is considerable 
(compare figures 7 e , f ) .  Upstream of the distorting section, the shape is similar to that 
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FIGURE 4. Non-dimensional distributions of velocity defect. ( a )  0 ,  x = 42 om; -, z = 52cm; 
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found in a uniform stream with a central maximum, but distributions towards the end 
of the distortion have developed a central minimum and subsidiary maxima. 

Scales of intensity and width for the distributions are plotted in figures 8 and 9 and 
are listed in table 2 .  The width scales for the three components, L,, L,, L, respectively, 
are half the separation of the positions where the intensity is one-half of the central 
value, and they are plotted as ratios to the mean velocity length scale I,. Qualitatively, 
the ratios for all three components change in similar ways with distance downstream, 
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X 

42 
52 
62 
72 
82 
92 

102 
112 

1.000 
1.035 
0.978 
0.873 
0.857 
0.919 
1.031 
1.029 

1.000 
0.895 
0.825 
0.750 
0.604 
0.467 
0.367 
0.345 

1.000 
1.08 
1.24 
1.53 
1.93 
2.33 
2.64 
2.82 

0.855 
1-065 
1.215 
1.657 
2.163 
2.834 
3.578 
4.214 

TABLE 1. Parameters of the mean velocity field. 

U J  ur 

7.2 x 10-2 
5.8 x 
6.0 x 
6.1 x 
6.2 x 
5.5 x 10-2 
5.4 x 10-2 
4.7 x 10-2 

0- c I 
/o 

I I I I 
40 60 80 100 120 

x (cm) 

FIGURE 5. Magnitudes of mean velocity scale and flow width scale. 0 ,  velocity 
scale as ratio to reference velocity; 0, flow width scale. 
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FIGURE 6. Variation of the momentum integral of equation (3.6). 
F L M  113 
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with an initial decrease between x = 41 cm and x = 56 cm followed by an increase to 
maximum values near x = 80cm and a return to nearly the initial values beyond 
x = 1 m. The changes are greatest for the distributions of 3 and least for the distri- 
butions of v7. 

Ratios of intensities and Reynolds stress to the total turbulent intensity, 
q2 = u2 + v2 + w2, appear in many predictive theories of turbulent flow. The ratios of 
- - - -  
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FIGURE 7 (c, d) .  For legend see page 447. 

the three intensities on the central plane change with downstream distance in much 
the same way as do the ratios for grid turbulence passing through - -  a similar duct 
(Tucker & Reynolds 1968), with the coefficient of lateral anisotropy, (vz - w2)/(2 + 2) 
reaching a value of 0.50 a t  x = 102cm. The stress-intensity ratio, a, = J"W1/?, 
measured near the position of maximum shear stress and velocity gradient, increases 
from a value near 0.16 a t  x = 41 cm to a maximum value of perhaps 0.19 a t  x = 5 1 cm, 
the entrance to the distortion and a position of maximum flow velocity. Thereafter, 
the ratio decreases steadily to around 0.1 1 a t  exit from the distortion. 

15-2 
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FIGURE 7 (e ,  f). For legend see page 447. 

From records of traverses with the plane of the X-wire parallel to the cylinder axis, 
values of the transverse Reynolds stress, - UV, were calculated and were found to be 
distributed asymmetrically with maximum values up to one-third of the maximum 
value of the shear stress. During these traverses, the direction of mean flow could be 
at a considerable angle to the plane of the X-wire, and small misalignments of the 
wires may generate fictitious values of the transverse stress. In  fact, runs with different 
hot-wire assemblies gave very different values. 
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6. Longitudinal gradients of velocity fluctuations 
Intensities of the time-differentiated outputs from the X-wire were recorded during 

a series of traverses, and lateral distributions of ( a u / & ~ ) ~ ,  ( t ? w / a ~ ) ~  and (au/ax) (awlax) 
were calculated from them by making the 'frozen flow' approximation that 
a/at = - U a / h .  The results are presented in figure 10 in non-dimensional form as 
ratios to  the maximum values against z / & ,  and in figure 11 as the maximum values 
against distance from the cylinder. To remove effects of flow Reynolds number, the 

~- 
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FIGURE 8 (a, b ) .  For legend see page 449. 
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FIGURE 8. Central values of the turbulent intensities and maximum 
values of the Reynolds stress (from several runs). 
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- - -  - -  - -  

mean-square velocity gradients are given in the non-dimensional forms, 

(v/U:)  ( a u / a ~ ) ~ ,  etc. 

The main features are: 
(i) The distributions of (au/ax)2 and (aw/ax)2 become more flat-topped with passage 
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X 

42 
52 
62 
72 
82 
92 

102 
112 

21 u; 
7.5 x 1 0 - 4  
5.85 x 10-4 
5.35 x 10-4 
5.25 x 10-4 
5.2 x 1 0 - 4  
4.75 x 10-4 
4.2 x 10-4 
4.0 x 10-4 

6.1 x 10-4 
4.75 x 10-4 
4.0 x 10-4 
3.95 x 10-4 

4.55 x 10-4 
5.05 x 10-4 
5.6 x 10-4 

4.2 x lo-' 

6.0 x 10-4 
4.1 x 10-4 
2.8 x 10-4 
2.1 x 10-4 

1.6 x 10-4 
1.7 x 10-4 
1.95 x 10-4 

1-65 x 

3.85 x 19-6 x 

2.6 x 10-4 
2.35 x 10-4 11.3 x 

3.05 x 10-4 14.7 x 10-4 

2-1 x 10-4 11.3 x 10-4 
1.8 x 10-4 10.9 x 10-4 

12.15 x lo-' 

1.55 x 10.95 x 
1-25 x 11.55 x 

TABLE 2. Turbulent intensities and scales. 

1-82 1.81 
1-67 1.57 
1-99 1-83 
2.07 1.85 
2-05 1.82 
2.01 1.88 
1.89 1.63 
1.79 - 

LWAl 

1.75 
1.61 
1.96 
2.34 
2-22 
1.93 
1.93 
1.95 

- 
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0 -0 

- c -  
1.0 -:-o- 0, . 
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3 

FIGURE 10. (a) Non-dimensional distributions of ( & L / ~ x ) ~ .  (b) Non-dimensional distributions of' 

(&o/8x)2.  0 ,  z = 42cm; 0, x = 72cm; -, x = 102cm. 
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FIQURE 11.  (a) Central values of (~/U:)( i?u/ i?x)~ (0 )  and of (~/U:)(aw/ax)~ (0). (a) Values of 
( v / U : ) J ( i ? u / a ~ ) ~  dz (0 )  and ( v / U ~ ) ~ ( & ~ / a x ) ~  dz (0). 
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through the distortion (compare for z / l ,  near 0-5 and near 2.0 for distances from the 
cylinder of 42 cm and 102 em), perhaps because turbulent energy is being generated by 
the irrotational straining over the whole width of the wake. 

(ii) Before entering the distortion, measured values of the ratio ( a ~ / a x ) ~ / ( a w / a x ) ~  
are near 0.7, and possibly a correction for the finite dimensions of the wire assembly 
would reduce it to near the ‘isotropic’ value of 0.5. The ratio increases through the 
distortion but remains less than the intensity ratio u2/w2. 

(iii) Values of the correlation coefficient, (au/ax) (aw/ax)/[(au/ax)2 (aw/ax)2]3, near 
the positions of maximum shear are about one-half of the correlation coefficient for 
velocity fluctuations, luWl l(u2wZ)t. 

It is apparent that the part of the turbulent motion that contributes to the velocity 
gradients is far from isotropic, and that the anisotropy arises both from the plane 
shearing of the wake and from the irrotational straining of the ambient flow. For the 
moderate Reynolds number of the flow, some anisotropy is not unexpected but its 
extent makes it necessary to treat with caution estimates of rates of turbulent energy 
dissipation from relations such as 

-- 
-- 

-- 

E = 1 5 ~ ( 8 ~ / 8 ~ ) ~ ,  (6.1) 

which assume full isotropy of the dissipating eddies. 

7. Measurements of flow intermittency 
The original reason for recording intermittency factors along with the turbulent 

intensities was to determine the location of the central plane of the wake as the average 
of the mean positions of the flow boundaries, but the distributions can be used to 
measure the rates of entrainment of non-turbulent fluid and the depths of indentation 
of the flow boundaries. An intermittency signal, Q(x, t ) ,  intended to be zero if the flow 
at the position x is not turbulent and to be one if it is, was constructed from the outputs 
of the X-wire. The signal was averaged using resistance-capacity filters with time- 
constants of nearly five seconds, and the resulting outputs were recorded with the 
intensity outputs. The mean value of the intermittency signal, y(x) = Q(x, t ) ,  is the 
fraction of time that there is turbulent flow at the position of the sensor, and the 
recorded outputs are believed to be good approximations to it. Distributions of inter- 
mittency factor were found using both the u and w components as basic input, with 
no appreciable differences. 

The distributions are represented very well by the difference of two error integrals, 

where zl, z2 are (nearly) the positions where y = +, and y is the standard deviation of 
8yla.z about those positions. z1 and z2 define the mean positions of the bounding surfaces 
between fully turbulent and non-turbulent flow, and y is a measure of the depth of the 
indentations of the surface. A convenient way to calculate ,u is to evaluate by 
quadrature m 

(7 .2)  
- m  
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X 

42 

52 

62 

72 

82 

92 

102 

112 

To (cm) 

2.17 

2.33 

2.92 

3.56 

4.81 

6.64 

8.00 

8.3 

P (cm) 

0.40 

0.50 

0.66 

0.84 

1.19 

1.39 

1.42 

1.78 

T O / C  

2.13 

2.24 

2.32 

2.33 

2.49 

2.85 

3.03 

3.50 

1.1 x 10-2 

0.9 x 10-2 

0.1 x 10-2 

2.8 x 

7.7 x 10-2 

4.4 x 10-2 

12.8 x 

PIT0 
0.183 

0.214 

0.228 

0.235 

0.233 

0.209 

0.178 

0.214 

T o l b  
2.54 

2.19 

2.40 

2.15 

2.22 

2.34 

2.24 

1.97 

TABLE 3. Results from intermittency values. 

If the distribution is of the form (7.1) and if p2 < (xl - z2)2, 

p = (7dIJ-l. (7.3) 

The values of qo = +(zl - z2)  and p given in table 3 are sufficient to describe completely 
the recorded distributions. 

In  principle, the rate of entrainment of non-turbulent fluid into the wake can be 
calculated from the measured values of ro, b and c,  using the relation 

U J U ,  = b-ld(ro/c)/dx, (7.4) 

equivalent to equation (3.13). Unfortunately, qo and the lateral strain ratio c increase 
together and, particularly towards the end of the distortion, gradients of yo/c deter- 
mined by finite difference are very sensitive to the values of the strain ratio. The values 
of the non-dimensional entrainment velocity, ue/Q, listed in table 3 have been 
obtained by drawing a smooth curve through values of v o / c  plotted against x (figure 
12 a )  and using values of b and c from table 1. 

The measured values of the entrainment velocity decrease from 1.1 x 10-2Ur a t  
x = 47 em (with a probable error estimated at 25 yo) to 0.1 x 10-2Ur a t  x = 67 cm, 
increasing to 2-8 x 10-2Ur at x = 77 em. In a plane wake, the entrainment ratio, u,/uo, 
is 0.21 for comparable distances from the cylinder (Townsend 1976, table 6.5), while 
the measured ratios for x = 47,67,77 em are 0.16, 0.02 and 0.4 respectively. The 
decrease in entrainment is expected from the effect of lateral compression on the 
entrainment eddies, and, although the numerical uncertainty is considerable, the 
recovery of entrainment velocity near x = 77cm is thought to be real. From that 
point, the calculated values are too large to be believed. They exceed considerably the 
root mean square of the total velocity fluctuation, 3.3 x 10-2U, (see table 2), and it is 
likely that the wake is spreading by secondary flows generated as the wake width 
becomes comparable with the channel depth. 

Only small changes are found in the relative depth of the boundary indentations, 
p/r,,, and in the ratio of the mean width of the turbulent flow to the mean velocity 
length scale, qo/Z, (figure 12b). The width ratio remains nearly constant with an 
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FIUURE 12. Parameters of the intermittency distributions. (a) Values of v 0  (0 ,  0) and of 
v o / c  (A, V). ( 6 )  Values of vo/Zo anci of p / v o .  
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FIQURE 13.One-dimensional correlations R l l / T  ( a )  Autocorrelation R,,(O, T ) ,  ( b )  Oy correlations 
R,,(O, T ,  0), ( e )  Oz correlation R,,(O, 0, T ) .  0 ,  x = 42 cm; 0, z = 72 cm; -- , x = 102 cm. 
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average value of 2.2, to be compared with values of 2-1 in plane wakes and jets (Town- 
send 1976, table 6.2). The relative depth varies from 0.23 near x = 70cm to 0.20 near 
the entrance and exit from the distortion. 

8. Velocity correlations and longitudinal spectra 

across the flow, space-time correlations such as 
By recording the velocity fluctuations from arrays of eight hot wires set in a line 

Ell@, 7; z )  = ul(x, t )  ul(x + r, t + 7) (8.1) 

can be calculated for sensor separations r set by the array geometry and time differences 
r that are multiples of the sampling interval. Figure 13 shows the auto-correlation 
Rll(O, 7; z) ,  and the two spatial correlations, Rll(O, r ,  0; z )  and Rll(O, 0, r ;  z ) ,  for the 
reference wire near the central plane of the wake and a t  three distances from the 
cylinder, expressed as fractions of the turbulent intensity at  the reference wire. 

Between x = 41 cm, before entering the distortion, and x = 71 cm, the time scale of 
the auto-correlation increases by about 30 yo, but thereafter the scale appears to 
decrease sharply. The apparent decrease is a consequence of the change from a corre- 
lation monotonically decreasing with time deIay to one with negative values over a 
range of time delays similar to those for appreciable correlation before. A similar 
change would be expected in grid turbulence as it is known that the spectrum develops 
a maximum for lateral strain ratios in excess of 2 (Townsend 1954). 

The transverse correlations for separations parallel to the cylinder axis and so in the 
direction of lateral compression, Rll(O, r ,  0) ,  show a steady but small decrease in scale, 
far less in ratio than the total strain b. Between x = 41 cm and x = 71 cm, the other 
transverse correlation, Rll(O, 0, T ) ,  increases in scale roughly in proportion to the total 
strain ratio c,  but no further increase occurs in spite of further extension. 

Frequency spectra of velocity fluctuations in the XOX plane have been calculated 
from digital records of the outputs from X-wires, with a, sampling interval of 0.256 ms. 
They have been rescaled to give one-dimensional spatial spectra on the assumption 
that the ‘frozen flow’ approximation is valid. Figure 14 shows the spectra for 
x = 41 cm and for x = 85 cm as plots of k#,j(k) against a logarithmic scale of the 
longitudinal wavenumber k. For each set, the X-wire was placed near the position of 
maximum shear. Spectral intensities are scaled so that 

and the mode of plotting is such that areas under the spectral curves correspond with 
the contributions to uiui from wavenumbers in the particular range. 

- 

The main features of the spectra are: 
(i) Even for the largest wavenumbers, ratios of the spectral intensities are far from 

those expected if the motion were isotropic, i.e. 

(ii) The spectral intensity of the Reynolds shear stress, - &, becomes small com- 
pared with both +11 and q533 for wavenumbers over 8 cm-l. 
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FIGURE 14(a, b ) .  For legend see page 460. 
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2 40 60 80 I00 

x (cm) 

FIGURE 15. Maximum values of ktq58 U;' compared with values of lOv(au/az)* U:' on the centre- 
line. .,  KT US,) x 106; 0, (&kg/U:) x IW; A, ( I O ~ ( ~ / U : )  x 106. 

(iii) The maximum values of kq511 and kq533 occur a t  wavenumbers decreasing from 

If the small-scale motion were locally isotropic, a substantial part of the spectra 
2.4cm-l a t  x = 41 cm to 1-6cm-l a t  x = 101 cm. 

w ould be described by 

and it would be possible to calculate the rate of turbulent energy dissipation (from a 
variety of sources, C is near 0.5). Unfortunately, the Reynolds number of the wake is 
too low for a substantial range of variation as k-4, but, from measurements in turbulent 
jets, Bradshaw (1967) has found that, on a log-log plot, the line representing equation 
(8.4) with an energy dissipation found from the energy balance is nearly tangential to 
the measured spectrum. The energy dissipation is an important quantity but difficult 
to measure in the distorted wake, and Rradshaw's observation suggests that the 
maximum values of k%@ may be a fair approximation to C k  In figure 15, maximum 
values of U;3kB&1 and U;3k54f3 are plotted against distance from the cylinder and 
compared with central values of 10U;3((au/(az)2. The similarity of the variations with 
downstream distance suggests that, while the absolute values are uncertain, the 
relative variation is reliable. 

q5,, = C€*k-t (8.4) 

9. Production and dissipation of turbulent energy 
The relative effects of the shearing and the irrotational distortion on the turbulent 

motion may be measured by the respective mean valocity gradients or by the rates of 
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energy transfer to the motion. From the data in Table 1, the maximum rate of shear 
changes from about 40 s-l at x = 42 cm to 8 s-l at  x = 102 cm, to be compared with 
lateral rates of strain of up to 23s-1 and longitudinal rates of strain up to 10s-1. 
Corresponding changes take place in rates of energy transfer from the various com- 
ponents of the velocity gradient. 

The energy balance of the whole flow is expressed by the equation for the total 
turbulent kinetic energy, 

+- g ( 2  - 2) (aK/ay - a w , / a Z )  dz +. uw aupz + 8 dz = 0. (9.1) s s s  
The equation is obtained from equations (3.8) and (3.9). The several terms have been 
calculated from the observed mean velocities and intensities except for the total 
energy dissipation which has been obtained by difference. It may be pointed out that 
the term omitted in the derivation of equation (3.8), d/dx/+F( U - 77,) dz, is less in 
magnitude than 5 x 10-6U,3 at all positions. The term representing the total energy 
production by shear, f iE(aU/az)  dx, has been calculated by assuming error law 
profiles for (U, - U )  and for ZLW so that 

The several terms of equation (9.1) are listed in table 4. Possible errors in the calculated 
values of the total dissipation are large, particularly towards the end of the distortion 
where the magnitude of the first (advection) term is sensitive to the exact values 
chosen for the strain ratios and where the width of the wake has become an appreciable 
fraction of the channel height. 

A useful index of turbulent energy dissipation is the dissipation length scale, 
defined as 

L, = (a",% (9.3) 

which, in ordinary, almost two-dimensional flows, is in proportion to the flow width. 
Average values for the distorted wake have been calculated from the total dissipation, 
the total turbulent intensity and the width scale ro by the relation 

In effect, it assumes that intensity and local dissipation rate are distributed uniformly 
over a region of width 27,. In table 5, values of L, and of L,/& are given and com- 
pared with values calculated from the measurements of spectra and intensities of 
velocity derivatives, on the assumptions leading to equations (6.1) and (8.4) for the 
local rate of energy dissipation. 

Estimates of L, from values of (au/ax)2 are consistently larger than those from the 
spectra in a ratio close to 1.5, while the estimates from the energy balance are scattered 
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X 

47 
57 
67 
77 
87 
97 

107 

Advection Lateral Longitudinal Dissipation 

- 76 x lo-' - i x 10-5 3 x 10-5 102 x 10-5 

30 x 10-5 - 36 x 10-5 - 5 x 10-5 30 x 10-5 

24 x 10-5 - 30 x 10-5 0 17 x 10-5 

0 - 5 x 10-6 - 11 x 10-6 40 x 
16 x 10-5 - 13 x 10-5 - 17 x lo-' 36 x 

- 13 x 10-5 - 58 x lo-' 20 x 10-5 68 x 10-6 
- 42 x lo-' - 67 x 28 x 10-5 94 x 10-6 

Note: The terms are: 

Advection b-1U;-2d/dx[s~-1&92d~] - -  
Lateral production +(aVJay - aW,/az) (w2 - we) UF3 
Longitudinal production (aU,/ax) (2- &(v2 + w2)) U;3 
Dissipation (by difference) U;3kdz  
Shear production UF3JZi3( aU/az) dz 

- -  

Negative values represent a net gain, positive ones a net loss. 

TABLE 4. Terms in the energy balance equation. 

Shear 

- 33 x 10-6 
- 24 x lo-' 
- 22 x 10-6 

- 17 x 10-6 
- 13 x lo-'' 
- 10 x 10-6 

- 20 x 10-5 

X 

42 
47 
52 
57 
62 
67 
72 
77 
82 
87 
92 
97 

102 
107 
112 

L, (-1 L , / h  
f 3 - A 

Balance Spectra Balance ( i 3 ~ / a x ) ~  Spectra 

- 4.78 2.79 - 5.6 3.3 

- 5-16 3.16 - 4.5 2.8 
- - - 2.3 

- 3.4 

3.3 

3.9 

2.19 - 

3.86 - 

4.74 

7.42 

- - 
- - - - - - 

- - - - 
- 5.22 3.20 - 3.1 1.9 

- - - - 

4.48 6.30 3.62 1.8 2.5 14 

- - - - 1.1 

- 5.4 

3.65 

20-7 - 
- 7.92 5.34 - 2.2 1.5 

- 9.52 6.03 - 2.3 1.4 
- - 

TABLE 5. Dissipation length scales. 

but tend to lie between them. An exception is the value for x = 47 cm, where the 
advection term in the energy balance is large and may be overestimated by up to 30 yo 
by finite-difference calculation of the longitudinal derivative in equation (9.1). Along 
the distortion, the dissipation length scale increases by a factor of around two while 
the flow width increases by a factor of four. Correspondingly, the ratio L& decreases 
from nearly three, characteristic of wakes and jets developing in uniform flow, to 
about 1.5 a t  the end of the distortion. 

Energy production from shear decreases through the distortion and becomes much 
less than the rate of production from the irrotational distortion. Although the pro- 
duction from longitudinal stretching changes sign in the second half of the distortion, 
the total of longitudinal and lateral production becomes nearly constant. 
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Z 

FIGURE 16. Development of long roller eddies in the distorted wake. ( a )  Section of a typical hair- 
pin eddy in an undistorted wake. Active entrainment disrupts the eddies before they can be 
elongated any more. (6) Section of an hairpin eddy that has been elongated by the shearing in 
the absence of active entrainment. (c) Transverse section of an elongated eddy, showing the 
folding of the bounding surface. (The arrows indicate the planes of circulation, or, in (c), stream- 
lines.) 
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10. Discussion 
The distorted wake differs in two significant respects from most of the turbulent 

flows which have been studied in detail. First, the turbulent motion receives energy 
both from the velocity shear of the wake and from the externally generated irrotational 
flow. Second, the external distortion extends eddies in the direction of shear while com- 
pressing them in the spanwise direction. If the flow patterns were distorted in pro- 
portion to the strain ratios, eddies with aspect ratios around 9 : 1 would emerge from 
the distortion. 

An effect of the distortion is to change the ratios of the turbulent intensities in 
nearly the way that has been observed in grid turbulence passing through similar 
distorting ducts (Markcha1 1967; Tucker & Reynolds 1968)) and that would beexpected 
either from consideration of transport equations or from forms of rapid-distortion 
theory (Townsend 1980). The initial increase in the ratio of Reynolds shear stress to 
total intensity is common to all the runs, and i t  seems to be consequent on the initial 
flow acceleration between x = 42 cm and x = 52 cm. From there on, the ratio de- 
creases steadily as would be expected if the irrotational straining transfers energy 
to the motion without generating Reynolds stress. 

I n  plane wakes, entrainment of ambient fluid is carried out by groups of large eddies 
with circulations in the XOX plane, which distort the bounding surface and so con- 
tinuously increase the area over which entrainment can occur (Grant 1958; Keffer 
1965). I n  Keffer’s experiments on the distorted wake, the direction of stretching was 
parallel to the cylinder axis and energy is transferred to  these eddies, leading to  a large 
increase in the rate of entrainment. With the direction of compression parallel to the 
axis, the entrainment eddies lose energy, cease to distort further the bounding surface 
and the entrainment rate falls sharply (table 3). Near the middle of the distortion, the 
rate has recovered to near the original value, indicating that the bounding surface is 
being distorted by large eddies whose motion is not inhibited by the axial compression. 
Records of intermittency factor suggest that the new entrainment eddies may be 
long roller eddies with axes in the flow direction and little vorticity in the direction of 
shear. It is possible that the new eddies could arise as double-roller or hairpin eddies, 
developed in response to the shearing and able, in the absence of disruption by the 
original entrainment eddies, to endure until they become inclined at  small angles to the 
mean flow by the action of the shearing. Figure 16 attempts to illustrate the process. 
I n  an unstrained wake, the energy- and stress-containing eddies become elongate,d by 
the shear only to the extent indicated in figure 16 ( a )  before being broken up by active 
entrainment. If the entrainment eddies are removed by lateral distortion, elongation 
may continue untilenergy-containing eddies have forms resembling that in figure 16 (b) .  
The consequence for the bounding surface is indicated in figure 16 (c), which shows a 
transverse section of the flow and a double-roller eddy. 

The relative depth of the indentations of the bounding surface, measured by p/qo 
(figure 12 and table 3)) changes much less than the entrainment rates, in apparent 
conflict with the correlation found by Gartshore (1966). However, removal of energy 
from the original entrainment eddies may prevent further growth of the indentations 
but they can be filled in only by slow, small-scale local entrainment. Similarly, new 
entrainment eddies must indent the surface to a considerable extent before the rate of 
increase of surface area is sufficient to cause an increase in entrainment. I n  short, while 
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entrainment is small, the indentations produced by the original eddies are slowly 
filling and the new eddies are indenting the surface but not yet a t  a rate to produce 
effective entrainment. The correlation between relative depth and entrainment found 
by Gartshore for self-preserving flows requires similarity of the entrainment mechanism 
a t  all stages of flow development, and will not be valid in flows like the distorted wake. 

The change in shape of the distributions of w2, the intensity of fluctuations normal 
to the plane of the wake (figures 7 e ,  f ), is probably a consequence of the suppression of 
the original entrainment eddies. I n  a plane wake, these eddies have motions in the 
xOz plane roughly described by stream functions of the form 

$(x, x) = A sech (kz) cos (kx), (10.1) 

where, near any particular section, the wavenumber k varies over a range of about 
1.3 : 1 (Townsend 1979). The consequent contributions to the intensities are 

and 

- 
(uz), = iA2k2 tanh2 (kx) sech2 (kz)\ 

(w2), = &A2k2sech2 ( k x ) ,  J - (10.2) 

and the contribution to p i s  a maximum a t  the wake centre while the contribution to 
z i s  small a t  the centre with maxima near the positions of maximum shear. Sup- 
pression of eddies of this form would reduce values of p a t  the wake centre more than 
near positions of maximum shear and might easily lead to the appearance of the 
central minimum. 

Distortion by the irrotational straining has a considerable effect on the length scales 
of the turbulent motion. The correlations show little change of eddy extent in the 
direction of compression in spite of an overall strain ratio of nearly three, possibly 
because the large energy-containing eddies are expanding in that direction by turbu- 
lent diffusion at nearly the same rate as they are being compressed by the mean flow 
gradient (figure 13b). I n  the downstream direction, the extent appears to  decrease 
sharply beyond x = 80 cm, but the decrease is almost entirely in the extent of positive 
correlation and the negative correlations for delays over 2 ms (figure 13a)  extend for 
nearly as far as the original positive ones. I n  the direction of lateral extension, a con- 
siderable increase of scale occurs between x = 42 cm and x = 72 cm, but little to no 
change with further extension (figure 13c). A natural interpretation is that an eddy 
becomes unstable if it is too elongated, and that it breaks up into sections of smaller 
aspect ratio, each having a motion nearly similar to that which i t  had before the break. 
It appears that the scales in the two transverse directions are roughly equal on entry 
to the distorting duct, but, after a distortion ratio of 2.5 : 1 (ratio of extension in Ox 
direction to that in the Oy direction), the ratio of scales attains a limiting value near 2 : 1. 

The changes of the correlation scale in the spanwise Ox direction are similar in ratio 
to those in the dissipation length scale (table 4), and the ratios to the flow width each 
decrease by a factor of two. I n  simple flows, all the length scales of the turbulent 
motion are proportional to and presumably controlled by the width of the mean 
velocity distribution, but prolonged lateral distortion with extension in the direction 
of shear leads to scales much less than the mean velocity scale and, apparently, to 
scales not controlled by it. 

To summarize the main conclusions from the measurements: 
(i) The distributions of velocity defect, turbulent intensities, Reynolds shear stress 
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and intermittency change very little in shape during the passage of the wake through 
the distortion, the ratios of the several widths remain nearly constant. 

(ii) The initial effect of the lateral distortion is to reduce considerably the rate of 
entrainment, but, after a total strain of 2 : 1, the rate recovers to near the original value. 
The renewed entrainment is thought to arise from the generation of entrainment eddies 
that do not lose energy to the distorting velocity field. 

(iii) Length scales of the turbulent motion increase through the distortion but by 
much less than the flow width. On emergence, the scales have become small compared 
with the flow width. 

(iv) The ratio of Reynolds stress to total intensity increases during initial flow 
acceleration but decreases steadily with increasing lateral distortion. 

Support for the work came from the Science Research Council and from the Berkeley 
Nuclear Laboratory of the Central Electricity Generating Board. 
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